

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Problem solving using C

Course/ Paper Title	Problem solving using C
Course Code	23SBCS11MM
Semester	Ι
No. of Credits	2
Course Type	Major (MJ)

	Course Objectives		
1.	To introduce the foundations of computing, programming and		
	To develop the ability to analyze a problem and devise an algorithm to		
2.	solve it.		
3.	To understand structured programming approaches.		
4.	To develop the basic concepts and terminology of programming in general.		
5.	To implement algorithms in the 'C' language.		
6.	To test, debug and execute programs.		

Course Outcome		
1.	Explore algorithmic approaches to problem solving.	
2.	Develop modular programs using control structures and arrays in 'C'.	

	Syllabus	
Unit I	Problem Solving Aspects	06 hours
	1. Introduction to problem solving using computers.	
	2. Problem solving steps.	
	3. Algorithms-definition, characteristics, examples,	
	advantages, limitations.	
	4. Flowcharts - definition, notations, examples, advantages	
	and limitations, Comparison with algorithms.	
	5. Compilation process(compilers, interpreters), linking and loading,	
	syntax and semantic errors, testing a program	
Unit II	'C' Fundamentals	07 hours
	1. History of 'C' Language	
	2. Application areas.	
	3. Structure of a 'C' program.	
	4. 'C' Program development life cycle.	
	5. Function as building blocks.	
	6. 'C' tokens	
	7. Character set, Keywords, Identifiers	
	8. Variables, Constants (character, integer, float, string,	
	escape sequences, enumeration constant).	
	9. Data Types (Built-in and user defined data types).	
	10. Operators, Expressions, types of operators, Operatorprecedence	
	and Order of evaluation.	
	11. Character input and output.	
	12. String input and output.	
	13. Formatted input and output.	
	14. Introduction to pre-processor	
Unit III	Control Structures	05 hours
	 Decision making structures:-if, if-else, switch and conditionaloperator. Loop control structures:-while, do while, for. 	
	3. Use of break and continue.	
	4 Nested structures	
	 T. Inconditional knowshing (gots statement) 	
	5. Unconditional branching (goto statement).	

Unit IV	Functions	06 hours
	1. Concept of function, Advantages of Modular design.	
	2. Standard library functions.	
	3. User defined functions:-declaration, definition, function call,	
	parameter passing (by value), returnstatement.	
	4. Recursive functions. Scope of variables and Storage classes.	
Unit V	Arrays	06 hours
	1. Concept of array.	
	2. Types of Arrays – One, Two and Multi-dimensional	
	3. Array.	
	4. Array Operations - declaration, initialization, accessing	
	array elements.	
	5. Memory representation of two-dimensional array(row major	
	and column major)	
	6. Passing arrays to function. Array applications	

	Suggested Readings
1.	How to Solve it by Computer, R.G. Dromey, Pearson Education.
2.	Problem Solving and Programming Concept, Maureen Sprankle,7th
	Edition, Pearson Publication.
3.	Problem Solving and Programming Concept, Maureen Sprankle,7 th
	Edition, Pearson Publication.
4.	A Structured Programming Approach Using C, Behrouz A. Forouzan, Richard F. Gilberg, Cengage Learning India
5.	The 'C' programming language, Brian Kernighan, Dennis Ritchie, PHI
6.	Programming in C ,A Practical Approach, Ajay Mittal ,Pearson
7.	Programming with C, B. Gottfried, 3rd edition, Schaum's outline Series, Tata McGraw
	Hill.
8.	Programming in ANSI C, E. Balagurusamy, 7thEdition, McGrawHill.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Database Management System

Course/ Paper Title	Database Management System
Course Code	23SBCS12MM
Semester	Ι
No. of Credits	2
Course Type	Major (MJ)

	Course Objectives		
1.	To understand the fundamental concepts of databases.		
2.	To understand user requirements and frame it in a data model.		
3.	To understand creations, manipulation and querying of data indatabases.		

Course Outcome		
1	Solve real world problems using appropriate set, function, and	
1.	relational models.	
2.	Design E-R Model for given requirements and convert the same into	
	database tables.	
3.	Use SQL.	

	Syllabus	
Unit I	Introduction to DBMS	
	1. Introduction	
	2. File system Vs. DBMS	
	3. Data independence	
	4. Structure of DBMS	
	5. Users of DBMS Advantages of DBMS	
Unit II	Conceptual Design	9 hours
	1. Overview of DB design process	
	2. Introduction to data models (E-R model, Relational model,	
	Network model, Hierarchicalmodel)	
	3. Conceptual design using ER data model (entities,	
	attributes, entity sets, relations, relationship sets)	
	4. Constraints (Key constraints, Integrity constraints, referential	
	integrity, unique constraint, Null/Not Null constraint, Check	
	constraint, Mapping constraints)	
	5. Extended features – Specialization, Aggregation, Generalization	
Unit III	SQL	9 hours
	1. Introduction to query languages	
	2. Basic structure	
	3. SQL Commands	
	4. Basic SQL query with constraints & nested queries	
	5. Aggregate Operators and functions	
	6 .SQL mechanisms for joining relations (inner joins, outer join	
	and their types) .Views	
Unit IV	Relational Database Design	08 hours
	 Introduction to Relational-Database Design (undesirable properties of a RDB design) Functional Dependency(Basic concepts, F+, Closure of an Attribute set) Concept of normalization, Normal Forms (1NF,2NFand 	
	3NF),Examples4. Keys Concept	

	Suggested Readings		
1.	Database System Concepts, Henry F. Korth, Abraham Silberschatz,		
	S.Sudarshan,ISBN:9780071289597,Tata McGraw- Hill Education		
2.	Database Management Systems, Raghu Ramakrishnan, ISBN:9780071254342, Mcgraw-hill higher Education		
3.	Database Management Systems, Raghu Rama Krishnan and Johannes Gehrke, McGraw- Hill Science/Engineering/Math; 3 edition, ISBN:9780072465631		
4.	Database Systems, Shamkant B. Navathe, Ramez Elmasri, ISBN: 9780132144988, PEARSON HIGHER EDUCATION		

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Lab Course in C

Course/ Paper Title	Lab Course in C
Course Code	23SBCS13MM
Semester	Ι
No. of Credits	2
Course Type	Major (MJ)

	Course Objectives	
1.	To understand the program development life cycle.	
2.	Solve simple computational problems using modular design and basic Features of the 'C' language.	
3.	To develop control structure logic	
4.	To understand array concepts	

	Course Outcome	
1.	Devise pseudo codes and flowchart for computational problems.	
2.	Write, debug and execute simple programs in 'C'.	
3.	Work with control structure using C	
4.	Handling basic Concepts	

Syllabus		
Unit I	Assignment 1.	2 Session
	 Problem Solving using Pseudo code and Flowchart, Simpleprograms, Understanding errors and error handling. 	
Unit II	Assignment 2.	2 Session
	Decision Making Control Structures.	
Unit III	Assignment 3.	2 Session
	Loop Control Structures	
Unit IV	Assignment 4.	3 Session
	Functions (User Defined functions, Library functions and Recursion).	
Unit V	Assignment 5.	3 Session
	Arrays (1-D and 2-D).	

Of Arts, Science and Commerce, Camp, Pune-1(Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

History of Science and Technology in India

FYBSc (Computer Science)

(CBCS–Autonomy21 Pattern)

Course Offered as	IKS
Course/ Paper Title	History of Science and Technology in India
Course Code	23SBCS11IK
Semester	I
No. of Credits	2
No of Hours	30

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	Understand the origin and growth of mathematics in ancient India.
2.	Assess the growth of engineering in ancient India.
3.	List the contributions of India to the world in the field of Mathematics and other Sciences
4.	To investigate development of various branch of natural sciences in colonial India.
5.	To study the impact of modern science in India upon Indian and their early response

Expected Course Specific Learning Outcome

Sr.	Learning
No.	Outcome
1.	Describe an account of the ancient Indian astronomy
2.	Discuss the mathematical knowledge of Indian in the ancient period.
3.	Discuss the architectural style flourished in ancient India

Unit I	Science and Technology- The Beginning	04
	1. Development in different branches of Science in Ancient	
	India: Astronomy, Mathematics, Engineering and Medicine	
Unit II	Developments in Science and Technology in Medieval India	08
	1. Scientific and Technological Developments in Medieval	
	India; Influence of the Islamic world and Europe; The role of	
	maktabs, madrasas and karkhanas set up.	
	2. Developments in the fields of Mathematics, Chemistry,	
	Astronomy and Medicine.	
Unit III	Developments in Science and Technology in Colonial India	10
	1. Early European Scientists in Colonial India- Surveyors,	
	Botanists, Doctors, under the Company's Service.	
	2. Indian Response to new Scientific Knowledge, Science and	
	Technology in Modern India:	
	3. Development of research organizations like CSIR and	
	DRDO;	
	4. Establishment of Atomic Energy Commission; Launching of	
	the Space satellites.	
Unit IV	Prominent scientist of India since beginning and their achievement	08
	1. Mathematics and Astronomy: Baudhayan, Aryabhtatta,	
	Brahmgupta, Bhaskaracharya, Varahamihira, Nagarjuna.	
	2. Scientists of Modern India: Srinivas Ramanujan, C.V.	
	Raman, Jagdish Chandra Bose, Homi Jehangir Bhabha and	
	Dr. Vikram Sarabhai.	

Suggested Readings		
1	Taher, M., Educational Developments in the Muslim World, Dehli, 1997.	
2	Rogers, A., Tuzuk-i-Jahangiri -Or Memoirs Of Jahangir, London, 1914.	
3	Agrawala, V.S., India as Known to Panini, Lucknow University, 1953.	
4	Cunningham, Alexander, The Ancient Geography of India. Indological Book House, Varanasi, 1963.	
5	Angelo, Josepha., The Dictionary of Space Technology. Frederick Muller Ltd., London, 1982.	
6	Krishnan, K.S., The New Era of Science. Publications Division, Ministry of Information and Broadcasting, Govt, of India, New Delhi, 1957	
7	Chatterji, S. Kumar (Ed.), The Cultural Heritage of India. Vol. V. The Ramakrishna MissionInstitute of Culture, Calcutta, 1978	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 23 Pattern)

Course Offered as	VSC
Course/ Paper Title	Digital Electronics in Computer Science
Course Code	23SBCS11VS
Semester	Ι
No. of Credits	2
No of Hours	60

Course Objectives	
7.	To understand the logic gates.
8.	To understand De Morgan's Theorem
9.	To understand the logic used in combinational circuit design
10.	To understand the logic used in combinational circuit design

Course Outcome :After completion of this course students will be able

3.	To simplify Boolean equations using Boolean Laws and K-Map method
4.	To design combinational circuits.
5.	To design combinational circuits.

	List of Practical (Minimum 15 Practical to be conducted)	
9.	Study of Number Systems and inter conversion	
10.	Study of basic Logic Gates (Verification of Truth tables)	
11.	Study of derived Logic Gates (Verification of Truth tables)	
12.	Study of De Morgan's Theorem	
13.	Study of Binary to Gray & Gray to Binary Converter	
14.	Study of Half Adder and Full Adder using Logic Gates.	
15.	Study of Universal Adder/Subtractor.	
16.	Use of Ex-OR as a 4-bit Parity Checker and Generator.	
17.	Study of Decimal to BCD Converter using Gates.	
18.	Study of Multiplexer and Demultiplexer (4:1 & 1:4).	
19.	Study of RS flip flops using NAND gates	
20.	Study of D flip flops using NAND gates	
21.	Study of 4- bit ALU	
22.	Study of asynchronous Up Counter	
23.	Study of asynchronous Down Counter	
24.	Study of Decade Counter	
25.	Study of 7 Segment Display	
26.	Study of Shift Register	
27.	Study of R-2R ladder DAC	
28.	Study of Flash ADC	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical course on Database Management System
Course Code	23SBCS11SE
Semester	Ι
No. of Credits	2
Offered As	SEC

Aims & Objectives of the Course

Sr.	Objectives
No.	
1	To basic database concepts
2	Solve simple Structure query language queries
3	Understand basic database management operations.
4	Design E-R Model for given requirements and convert the same into
	database tables

Sr.	Learning Outcome
No.	
1	Create database and normalization of databases
2	Write, debug and execute simple programs in 'C'.
3	Create database tables in postgreSQL.

Syllabus

Sr. No	Assignments	No. of Session
1.	Assignment 1.	2
	To create simple tables with only the primarykey constraint (as a	
	table level constraint & as a field level constraint)(include all data	
	types)	
2.	Assignment 2.	3
	To create more than one table, with referential integrity constraint, PK constraint.	
3.	Assignment 3.	2
	To create one or more tables with following constraints, in	
	addition to the first twoconstraints (PK & FK)	
	Check constraint	
	Unique constraint	
	Not null constraint	
4.	Assignment 4.	3
	To drop a table, alter schema of a table, insert / update / delete records using tablescreated in previous Assignments. (use simple forms of insert / update / delete statements)	
5.	Assignment 5.	2
	To query the tables using simple form of select statement Select	
	<field-list> from table [where <condition> order by <field list="">]</field></condition></field-list>	
	Select <field-list, aggregate="" functions<="" th=""><th></th></field-list,>	
	> from table [where <condition> group by <>having <> order by</condition>	
	\diamond]	
6.	Assignment 6.	2
	To query table, using set operations (union, intersect)	

Operating Environment

For DBMS:

Operating System: Linux

Operating system DBMS:

PostgreSQL

Language: SQL

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Advanced C

Course/ Paper Title	Advanced C
Course Code	23SBCS21MM
Semester	II
No. of Credits	2
Course Type	Major (MJ)

	Course Objectives
1.	To study advanced concepts of programming using the 'C' language.
2.	To understand code organization with complex data types and structures.
3.	To work with files.

	Course Outcome
1.	Develop modular programs using control structures, pointers, arrays, strings and structures
2.	Design and develop solutions to real world problems using C.

Syllabus			
Unit I	Pointers		10 hours
	1.	Introduction to Pointers.	
	2.	Declaration, definition, initialization, dereferencing.	
	3.	Pointer arithmetic.	
	4.	Relationship between Arrays & Pointers- Pointer toarray, Array	
		of pointers.	
	5.	Multiple indirections (pointer to pointer).Functions and pointers- Passing pointer to function, returning pointer	

	From function, function pointer.	
	6. Dynamic memory management-	
	Allocation(malloc(),	
	calloc()),Resizing(realloc()),	
	Releasing(free()).,	
	7. Memory leak, dangling pointers.	
	8 Types of pointers	
Unit II	Strings	07 hours
	1. String Literals, string variables, declaration, definition, initialization.	
	2. Syntax and use of predefined string functions	
	3. Array of strings. Strings and Pointers Command line arguments.	
Unit III	Structures And Unions.	08 hours
	1. Concept of structure, definition and initialization, use of type	
	def.	
	 Accessing structure members. Nested Structures 	
	4. Arrays of Structures	
	5. Structures and functions- Passing each member of structure as a	
	separate argument, passing structure by value /address. Pointers	
	and structures.	
	6. Concept of Union, declaration, definition, accessing union	
	members.	
	7. Difference between structures and union	
Unit IV	File Handling	05 hours
	1. Introduction to streams.	
	2. Types of files .Operations on text files.	
	3. Standard library input/output functions.	
	4. Random access to files.	

	Suggested Readings
1.	C: the Complete Reference, Schildt Herbert, 4th edition, McGrawHill
2.	A Structured Programming Approach Using C, Behrouz A. Forouzan, Richard F. Gilberg, Cengage Learning India
3.	The 'C' programming language, Brian Kernighan, Dennis Ritchie, PHI
4.	Programming in C ,A Practical Approach, Ajay Mittal ,Pearson
5.	Programming with C, B. Gottfried, 3rd edition, Schaum's outline Series, Tata McGrawHill.
6.	Programming in ANSIC, E. Balagurusamy, 7thEdition, McGrawHill.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Relational Database Management System

Course/ Paper Title	Relational Database Management System
Course Code	23SBCS22MM
Semester	Π
No. of Credits	2
Course Type	Major (MJ)

Course Objectives		
1.	To teach fundamental concepts of RDBMS(PL/ PgSQL)	
2.	To teach database management operations	
3.	Be familiar with the basic issues of transaction processing and concurrency control	
4.	To teach data security and its importance	

	Course Outcome
1	To design E-R Model for given requirements and convert the same
1.	into database tables.
2.	To use database techniques such as SQL & PL/SQL.
3.	To explain transaction Management in relational database System.

TIm:4 T	Syllabus Relational Database Design Using PLSOL	00 houng
Unit I	Relational Database Design Using PLSQL	09 nours
	1. Introduction to PLSQL	
	2. Stored Procedures	
	3. Stored Functions	
	4. Handling Errors and Exceptions	
	5. Cursors	
	6. Triggers	
Unit II	Transaction Concepts and concurrency control	08 hours
	1. Introduction and basic concepts of transaction	
	2. Schedules & concept of Serializability	
	3. Serializability by lock mechanism	
	4. Basic timestamp method & Thomas Write Rule.	
	5. Locks with multiple granularity, dynamic database	
	concurrency (Phantom Problem), Timestamp V/s	
	Locking	
	6. Deadlock	
Unit III	nit III Database Integrity and Security Concepts	
	1. Domain constraints & Referential Integrity	
	2. Methods for database security	
	i. Discretionary access control method	
	ii. Mandatory access control	
	iii. Role base access control for multilevel security.	
	3. Use of views in security enforcement.	
	4. Encryption technique for security.	
	Statistical database security.	
Unit IV	Crash Recovery	05 hours
	1. Failure classification	
	2. Recovery concepts	
	3. Log base recovery techniques (Deferred and Immediateupdate)	
	4. Checkpoints, Relationship between databasemanager	
	and buffer cache.	
	5. Recovery with concurrent transactions (Rollback, checkpoints, commit)	
	6. Database backup and recovery from catastrophic failure	

Unit V	Other Databases	03 hours
	1. Introduction to Parallel and distributed Databases	
	2. Introduction to Object Based Databases	
	3. Other Databases (XML ,NoSQL, Multimedia, Big Data)	

	Suggested Readings			
1.	Database System Concepts, By Silberschatz A., Korth H., Sudarshan S., 6th			
	Edition, McGraw Hill Education			
2.	Database Management Systems, Raghu Ramakrishnan, Mcgraw-Hill Education			
3.	Database Systems, Shamkant B. Navathe, RamezElmasri, PEARSON HIGHER			
	EDUCATION			
4.	Fundamentals of Database Systems, By: Elmasri and Navathe, 4th Edition Practical PostgreSQL O'REILLY			
5.	Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, McGraw-Hill Science/Engineering/Math; 3 edition, ISBN: 9780072465631			

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Lab Course in Advanced C

Course/ Paper Title	Lab Course in Advanced C
Course Code	23SBCS23MM
Semester	II
No. of Credits	2
Course Type	Major (MJ)

	Course Objectives
1.	To understand the program development.
2.	Solve advanced computational problems using modular design and advanced Features of the 'C' language.
3.	To develop Structure & union concepts
4.	To understand File concepts

	Course Outcome
1.	Devise the string concepts in details with user defined functions
2.	Write, debug and execute advanced programs in 'C'.
3.	Structure & union using advanced C
4.	Handling basic Concepts

Syllabus		
Unit I	Assignment 1.	3 Session
	Simple Pointers.	
	1) Pointer initialization and use of pointers.	
	2) Pointer Arithmetic	
Unit II	Assignment 2.	2 Session
	Dynamic Memory Allocation.	
Unit III	Assignment 3.	2 Session
	String handling using standard library functions	
Unit IV	Assignment 4.	3 Session
	Structure and Unions.	
Unit V	Assignment 5.	2 Session
	File Handling	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Mathematics for Artificial Intelligence -I

Course Title	rse Title Mathematics for Artificial Intelligence -I		
Course Code: 23SBCS21MNA			No. of Credits: 2
Course Type: Minor			Total Teaching Hours: 30

	Course Objectives			
1.	A student should be able to recall basic facts about mathematics and should be able to display knowledge of conventions such as notations, terminology and recognize basic geometrical figures and graphical displays, and state important facts resulting from their studies.			
2.	A student should get a relational understanding of mathematical concepts and concerned structures and should be able to follow the patterns involved, mathematical reasoning			
3.	A student should get adequate exposure to global and local concerns that explore many aspects of Mathematical Sciences.			
4.	A student must be able to apply their skills and knowledge, that is, translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques to process the information, and draw the relevant conclusion.			

	Course Outcome		
1.	Students will know the basic concepts, properties, and operations of sets and relations and also analyze the proof techniques by mathematical induction and apply the basic principles of counting, permutations, and combinations for solving various practical problem		
2.	Student should be able to define domain, range relation and Matrix representation		
3.	Student should be able to apply the fundamental counting principle to real-life situations		
4.	Students will be able to apply the logical structure of proofs and work symbolically with connectives and quantifiers to produce logically valid, correct and clear arguments		

Syllabus

Syllabus			
Unit I	Set Theory	06 hours	
	1. Set, set representation methods	1	
	2. Types of sets: null set, finite set, infinite set, equivalent sets and	2	
	equal sets, subsets, power sets		
	3. Operations on sets: union, intersection, complement, difference	3	
	and symmetric difference		
Unit II	Relations	06 hours	
	1. Relations, Properties of Binary Relations	2	
	2. Digraphs, matrix representation and composition of relations	2	
	3. Equivalence relations and Partitions, Partial Ordering Relation	2	
Unit III	Techniques of Counting	08 hours	
_	1. Basic Counting Principles	2	
	2. The Inclusion-Exclusion Principle (Without proof)	2	
	3. Permutations and Combinations	2	
	4. The Pigeonhole Principle	2	
Unit IV	Logic	10 hours	
	1. Propositional Logic, Propositional Equivalences	2	
	2. Predicates and Quantifiers	2	
	3. Argument in propositional Logic, Validity of an Argument	4	
	(Direct and Indirect methods), Rules of Inference for		
	Propositional Logic, Building Arguments		
	4. Mathematical induction	2	

	Suggested Readings
1.	Discrete Mathematics and its applications, by Kenneth Rosen, Tata
	McGraw Hill, Seventh Edition
2.	Discrete Mathematical Structures, by Kolman, Busby, Ross, Prentice Hall, Sixth
	Edition
3.	Elements of Discrete Mathematics, by C. L. Liu, Tata McGraw Hill.

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Statistics for Data Science-I

Course Title	Statistics For Data Science-I		
Course Code: 23SBCS21MNB			No. of Credits: 2
Course Type: Minor			Total Teaching Hours: 30

Course Objectives				
1.	A student should be able to recall basic concepts and terminology in Statistics and covers basic tools and methods required for data analysis from their studies.			
2.	A student should demonstrate knowledge of probability, standard statistical distributions, and computational techniques.			
3.	A student must be able to apply statistical tools and techniques that is, translate information presented verbally into Statistics form, select and use appropriate statistical formulae or techniques to process the information and draw the relevant conclusion.			

	Course Outcome
	Know the basic concepts, analyze statistical data graphically using frequency
	distributions and cumulative frequency distributions, analyze data using
1.	measures of central tendency, use the basic probability rules, independent
	andmutually exclusive events, translate real-world problems into probability
	models, derive the probability
	density function, calculate probabilities.
2.	Calculate and interpret the correlation between two variables, predicting a particular
	value of Y for a given value of X and significance of the correlation coefficient.

Syllabus			
Unit I	Data C	ondensation and Presentation of Data	07 hours
	1.	Definition, importance, scope, and limitations of statistics.	1
	2.	Data Condensation: Types of data (Primary and Secondary),	3
		attributes and variables, discrete and continuous variables.	5
	3.	Graphical Representation: Histogram, Ogive curves, stem and	
		Leaf chart.	3
Unit II	Descrip	ptive Statistics	10 hours
	1.	Measures of central tendency: Concept of central tendency,	1
		requisites of good measures of central tendency.	3
	2.	Arithmetic mean, Median and Mode.	3
	3. 4.	Partition Values: Quartiles, Box-plot. Measures of dispersion: Range and quartile deviation, variance,	3
		And standard deviation.	
Unit III	Momen	nts, Skewness, and Kurtosis	08 hours
	1.	Concept of raw moments, central moments, and the relation	2
		between raw and central moments.	
	2.	Measures of skewness: Types of skewness, Pearson's and	3
		Bowley's coefficient of skewness, measures of skewness	
		based on moments.	
	3.	Measures of kurtosis: Types of kurtosis, measures of kurtosis based on moments.	3
Unit IV	Correla	ation (For ungrouped data)	05 hours
	1.	Concept of bivariate data, scatter diagram, its	2
		interpretation, positive correlation, negative correlation,	
		zero correlation.	
	2.	Karl Pearson's coefficient of correlation, properties	2
		of the correlation coefficient, interpretation of	
		correlation coefficient, coefficient of determination	
		with interpretation.	1
	3.	Spearman's rank correlation coefficient.	1

	Suggested Readings
1.	Statistical Methods, S.P.Gupta, Sultan Chand and Sons Educational Publishers.
2.	Fundamentals of Statistics, Sixth Revised and Enlarged Edition, S.C. Gupta, Himalaya Publishing House

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc (Computer Science)

(CBCS-Autonomy 23 Pattern)

Course/ Paper Title	German Language
Course Code	23ABON21OE
Semester	II
No. of Credits	2(36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	To acquire intercultural competency, especially skills of recognizing, describing within German-speaking societies and within one's own
2.	To apply the study of German language and culture to related subjects, and vice versa
3.	To develop environmental literacy and awareness of sustainability

Expected Course Specific Learning Outcomes

Sr.	Learning Outcome
No.	
1.	One can understand and use familiar, everyday expressions and simple sentence as well as which is directly related to the satisfying of concrete needs
2.	Students can introduce himself/herself and others as well as ask about themselves

Syllabus

Unit No.	Title with Contents	No. of
		Lectures
Unit I	Self-Introduction	06
	1. Self-introduction and asking about others	
	2. Greetings and saying goodbye	
	3. Alphabets and spelling formation	
	4. Noun and personal pronoun	
	5. Numbers till 20	
	6. Verb	
	7. WH question	
Unit II	Vocabulary Skills	07
	1. Vocabulary related to eating and	
	drinking	
	2. How to order in restaurant	
	(ordering food and paying the	
	bill)	
	3. Subject and article	
	4. Talking about hobbies	
	5. Weekdays, Months and seasons of	
	the year	
	6. Expressing the negative using	
	"Kein"	
	7. Conjugation	
	8. Object and article	
Unit III	Language interactivity	08

	1. Understand and name the time	
	2. Ask for items and price	
	3. Vocabulary related to clothes	
	4. Shopping for clothes	
	5. Asking opening and closing times	
	6. Ask questions about locations	
	7. Prepositions used to tell the time	
	8. Talk about family	
	9. Modal verbs	
UNIT IV	Socioculture Practice	08
	1. Make appointments, understand and give instructions	
	2. Colours, ordinal numbers and date	
	3. My house Vocabulary	
	4. Prepositions	

Suggested Books		
1.	NETZWERK Deutsch als Fremdsprache A1(Goyal, New Delhi, 2015)	
2.	Schulz-Griesbach: Deutsch als Fremdsprache. Grundstufe in einem Band (for	
	Grammar)	
	Web References	
1.	https://www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html	
2.	https://www.schubert-	
	verlag.de/aufgaben/arbeitsblaetter a1 z/a1 arbeitsblaetter index z.htm	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 23 Pattern)

Course Offered as	VSC
Course/ Paper Title	Embedded System
Course Code	23SBCS21VS
Semester	II
No. of Credits	2
No of Hours	60

Sr. No.	Course Objectives	
1	To get hands on training for Python Language	
2	To study experimentally interfacing of an Arduino	
3	To study experimentally interfacing of Raspberry Pi	
4	To educate and train students for upcoming technology in IoT.	

Sr. No.	Course Outcome	
1.	To acquire skills of Python programming for simple applications	
2.	To interface various I/O peripherals and sensors to Arduino	
3.	To interface various I/O peripherals and sensors to Raspberry Pi	
4.	To design and build Raspberry Pi based projects	
5.	To design and build IoT based system using Arduino.	

This VSC course consists of 15 experiments. After studying course student can design and develop working models using Arduino and Raspberry Pi.

- List of Major Equipment/ Instrument with Broad Specifications
 - i) Raspberry Pi Board
 - ii) Computer System(Latest version)
 - iii) Peripheral Interfacing Trainer kits

	List of Practicals (Minimum 15 Practicals to be conducted)	
1.	Interfacing of LED to Arduino Board. Introduction of LED's 	
	Interfacing Circuit Description of LED's	
	Programming of LED's Interfacing with Arduino Board	
2.	 Interfacing of Switch to Arduino Board. Introduction of switch 	
	 Interfacing Circuit Description of switch Controlling of LED's by using Switches 	
	Programming of switch Interfacing with Arduino Board	
3.	Interfacing of IR sensor and Buzzer to Arduino Board.	
	• Introduction of IR sensor and Buzzer	
	Interfacing Circuit Description of IR sensor	
	Interfacing Circuit Description of Buzzer	
	Programming of IR sensor and Buzzer Interfacing with Arduino Board	
4.	Interfacing of LCD to Arduino Board.	
	• Introduction to 16 x 2 LCD Display	
	• Commands and Library functions of 16 x 2 LCD Display	
	• Interfacing Circuit Description of 16 x 2 LCD	
	• Programming of 16 x 2 LCD	
5.	Interfacing of Motors to Arduino Board.	
	Introduction to Motors	
	 Types of Motors used in Embedded System Programming & Controlling of motors in Embedded System 	
6	• Hogramming & Contronning of motors in Enfocuted System	
0.	 To control LED switching using Mobile/Bluetooth Device and Arduino Board. Introduction of Bluetooth Module (HC-05) with pin diagram 	

	• Interfacing Circuit Description of Bluetooth Module (HC-05)		
	• Interfacing Circuit Description of Bluetooth Module (HC-05)		
	• Study of different Apps for Bluetooth Module to install on Mobile		
	Programming for Interfacing with Arduino Board		
7.	To study and Interfacing of Temperature Sensor to Arduino Board and display value on LCD Display.		
	Introduction to Temperature Sensors		
	• Types of Temperature Sensors used in Embedded System		
	Interfacing Circuit Description of Temperature Sensors		
	Programming for Interfacing with Arduino Board		
8.	To study and Interfacing of Ultrasonic Sensors		
	• Introduction to Ultrasonic Sensors and its use in Embedded System		
	• Interfacing Circuit Description of Ultrasonic Sensors		
	Programming for Interfacing with Arduino Board		
9.	 Raspberry Pi Introduction to Raspberry Pi Raspberry Pi Series and Their Different types Pin Description of Raspberry Pi Different OS versions 		
10.	 Interfacing LEDs to Raspberry Pi using GPIO pins Interfacing Circuit Description of 1 LED / 2 LEDs / 3 LEDs with Raspberry Pi Interfacing Circuit Description Python Programming for Interfacing with Raspberry Pi 		
11.	Interfacing a switch connected to the GPIO pins and display status on LED using Raspberry Pi		
	 Interfacing Circuit Description of 1 switch / 2 switches with Raspberry Pi Interfacing Circuit Description Python Programming for Interfacing with Raspberry Pi 		
12.	Interfacing temperature Sensor to Raspberry Pi to detect temperature		
13.	Interfacing Humidity Sensor to Raspberry Pi to detect temperature		
14.	Interfacing photo sensor to Raspberry Pi to detect light intensity		
	• Introduction to Photo Sensors & Use of Sensors used in Embedded System		
	Interfacing Circuit Description		
	• Python Programming for Interfacing with Raspberry Pi		

r			
15.	Interfacing PIR sensor using Raspberry Pi for motion detection		
	Introduction to PIR Sensors & use in Embedded System		
	Working of PIR Sensors & Use in Embedded System		
	Interfacing Circuit Description		
	• Python Programming for Interfacing with Raspberry Pi		
16.	Interfacing Pi Camera to Raspberry Pi to capture image		
	Introduction to Pi Camera		
	Interfacing Circuit Description		
	• Python Programming for Interfacing with Raspberry Pi		
17.	Case Study :		
	IoT Project using Arduino and Bluetooth Module for smart home through Android App		
18.	Case Study:		
	IoT Project using Ultrasonic Sensor HC-SR04 and Arduino to distance calculation		
	using Processing App		
19.	Case Study: Home automation using Arduino and Bluetooth		
20.	Case Study: Bluetooth Controlled Car using Arduino		
21.	Case Study: Automatic Irrigation System using an Arduino		
22.	Case Study: Water Level indicator using Arduino		
23.	Case Study: Raspberry Pi-Powered Motion Sensor and Alarm		
24.	Case Study: Door Lock System using Arduino / Raspberry Pi		
25.	Case Study: Weather monitoring System using Arduino / Raspberry Pi		

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Lab Course in Relational Database Management System
Course Code	23SBCS21SE
Semester	II
No. of Credits	2
Offered As	SEC

Aims & Objectives of the Course

Sr.	Objectives
No.	
1	To basic relational database concepts
2	Solve simple Structure query language queries
3	Understand relational database management operations.
4	

Sr.	Learning Outcome	
No.		
1	Create database and normalization of databases	
2	Write, debug and execute simple programs in 'C'.	
3	Create database tables in postgreSQL.	

Syllabus	
----------	--

Sr. No	Assignments	No. of Hours
1.	Assignment 1. Stored Procedure	08
	1) A Simple Stored Procedure	
	2) A Stored Procedure with IN, OUT and IN/OUT	
	parameter	
2.	Assignment 2. Stored Function	10
	1) A Simple Stored Function	
	2) A Stored Function that returns	
	3) A Stored Function recursive	
3.	Assignment 3. Cursors	10
	1) A Simple Cursor	
	2) A Parameterized Cursor	
4.	Assignment 4. Exception Handling	10
	1) Simple Exception- Raise Debug Level	
	Messages	
	2) Simple Exception- Raise Notice Level	
	Messages	
	3) Simple Exception- Raise Exception Level	
	Messages	
5.	 Assignment 5. Triggers 1) Before Triggers (insert, update, delete)After Triggers (insert, update, delete) 	10

Operating Environment

For DBMS:

Operating System: Linux

Operating system DBMS:

PostgreSQL

Language: SQL